วันจันทร์ที่ 24 กันยายน พ.ศ. 2555

พลังงานความร้อน

พลังงานความร้อน

พลังงานความร้อน

จากวิกิพีเดีย สารานุกรมเสรี
พลังงานความร้อน หรือ พลังงานอุณหภาพ เป็น รูปแบบหนึ่งของพลังงาน มนุษย์เราได้พลังงานความร้อนมาจากหลายแห่งด้วยกัน เช่น จากดวงอาทิตย์, พลังงานในของเหลวร้อนใต้พื้นพิภพ , การเผาไหม้ของเชื้อเพลิง, พลังงานไฟฟ้า, พลังงานนิวเคลียร์, พลังงานน้ำในหม้อต้มน้ำ, พลังงานเปลวไฟ ผลของความร้อนทำให้สารเกิดการเปลี่ยนแปลง เช่น อุณหภูมิสูงขึ้น หรือมีการเปลี่ยนสถานะไป และนอกจากนี้แล้ว พลังงานความร้อน ยังสามารถทำให้เกิดการเปลี่ยนแปลงทางเคมีได้อีกด้วย
หน่วยที่ใช้วัดปริมาณความร้อน คือ แคลอรี่ โดยใช้เครื่องมือที่เรียกว่า แคลอรี่มิเตอร์

อุณหภูมิและหน่วยวัด

ในชีวิตประจำวันเราจะคุ้นเคยกับการใช้พลังงานความร้อน (thermal energy) อยู่เสมอ พลังงานความร้อนเป็นพลังงานที่สามารถถ่ายเทจากที่หนึ่งไปยังอีกที่หนึ่งได้ อันเนื่องมาจากการเปลี่ยนแปลงอุณหภูมิ เมื่อวัตถุดูดกลืนพลังงานความร้อนจะทำให้วัตถุมีอุณหภูมิสูงขึ้น จึงเกิดการถ่ายเทพลังงานความร้อนให้กับวัตถุอื่นที่มีอุณหภูมิต่ำกว่า ซึ่งต้นกำเนิดของพลังงานความร้อนมาจากดวงทิตย์ การเผาไหม้ของเชื้อเพลิง การขัดถูกันของวัตถุ และจากพลังงานไฟฟ้า วัตถุเมื่อได้รับพลังงานความร้อนจะมีอุณหภูมิสูงขึ้น อุณหภูมิเป็นปริมาณที่บอกให้ทราบถึงระดับความร้อนของวัตถุ เครื่องมือที่ใช้วัดอุณหภูมิมีหลายชนิดที่นิยมใช้กันมากคือ เทอร์มอมิเตอร์ ซึ่งเป็นเครื่องมือที่ใช้หลักการขยายตัวของของเหลวเมื่อได้รับความร้อน มีลักษณะเป็นหลอดแก้วยาว ปลายทั้งสองข้างปิด ปลายหลอดข้างหนึ่งเป็นกระเปาะ ซึ่งบรรจุของเหลวที่ขยายตัวได้ง่ายเมื่อได้รับความร้อน และหดตัวได้ง่ายเมื่อได้รับความเย็น ของเหลวที่บรรจุอยู่ภายในเทอร์มอมิเตอร์นิยมใช้ปรอทซึ่งมีสีเงิน แต่บางทีก็ใช้แอลกอฮอล์ผสมสีบรรจุในเทอร์มอมิเตอร์แทนปรอท
หน่วยที่ใช้วัดอุณหภูมิที่นิยมกันอย่างแพร่หลายคือ องศาเซลเซียส ( ํC) องศาฟาเรนไฮต์ ( ํF) และเคลวิน (K) โดยกำหนดว่า อุณหภูมิที่เป็นจุดเยือกแข็งของน้ำบริสุทธิ์ คือ 0 องศาเซลเซียส หรือ 32 องศาฟาเรนไฮต์ หรือ 273 เคลวิน และอุณหภูมิที่เป็นจุดเดือดของน้ำบริสุทธิ์ คือ 100 องศาเซลเซียส หรือ 212 องศาฟาเรนไฮต์ หรือ 373 เคลวิน

คลื่นเสียง

คลื่นเสียง




อออออ
วี๊ดดดดดด.....วิ้วววววว...... เสียงชายหนุ่มผิวปากเพื่อแซวและเรียกความสนใจจากสาวๆที่เดินผ่าน หวังว่าหลายๆคนคงคุ้นเคยกับภาพตามประโยคที่กล่าวมานะครับ และตัดมาภาพต่อไปคือภาพสาวเจ้าเขินอาย หน้าแดง อมยิ้ม แล้วก็รีบเดินผ่านไป หรือถ้าเจอสาวห้าวๆ อย่างลูกสาวกำนัลก็จะถูกสวนกลับด้วยประโยคเจ็บๆ แบบว่า "เป่าปากหา...........เหรอ? (อันนี้ รักคำไหนชอบคำไหนก็เติมกันเอาเองนะครับ) อ๊ะๆ ก่อนจะนอกเรื่องไปไกล ใครเคยสงสัยมั้ยครับว่า เสียง "วี๊ดดดดด วิ้ววววววว" นั้น เกิดขึ้นได้อย่างไร???xxxxxเสียงที่เกิดขึ้นนั้น เกิดจากปรากฏการณ์การสั่นพ้องของเสียงครับ หรือที่ภาษาอังกฤษใช้คำว่า Sound Resonance : เนื่องจากเสียงเกิดจากการสั่นของแหล่งกำเนิด และการเคลื่อนที่ของเสียงเป็นการเคลื่อนที่แบบคลื่น ขณะที่เสียงเคลื่อนที่ผ่านตัวกลาง อนุภาคของตัวกลางจะสั่นด้วยความถี่เดียวกับความถี่ของแหล่งกำเนิด เช่น ถ้าเราส่งคลื่นเสียงจากลำโพงเข้าไปทางปากหลอดเรโซแนนซ์ อนุภาคของอากาศในหลอดเรโซแนนซ์จะถูกบังคับให้สั่นด้วยความถี่ของเสียงจากลำโพง ถ้าปรับความถี่ของคลื่นเสียงให้มีค่าเท่ากับความถี่ธรรมชาติของอนุภาคของอากาศภายในหลอดเรโซแนนซ์อนุภาคของอากาศจะสั่นแรงที่สุด ทำให้เกิดเสียงออกจากปากหลอดเรโซแนนซ์ดังที่สุด ปรากฏการณ์ที่เกิดขึ้นนี้ เรียกว่า "การสั่นพ้องของเสียง"
ภาพแสดงการส่งคลื่นเสียงเข้าในท่อเรโซแนนซ์

การเกิดการสั่นพ้องของเสียงในหลอดที่มีความยาวคงที่
อออออถ้าเราส่งคลื่นเสียงจากลำโพงเข้าไปทางปากหลอด คลื่นเสียงจะสะท้อนที่ปากหลอดทั้งสองกลับไปกลับมาแล้วเกิดการแทรกสอดกัน ทำให้เกิดคลื่นนิ่ง เมื่อปรับความถี่ของคลื่นเสียงให้มีค่าพอเหมาะจะเกิดคลื่นนิ่งที่มีแอมพลิจูดเพิ่มมากขึ้น และถ้าที่ปากหลอด เป็นตำแหน่งของปฏิบัพของคลื่นพอดี เราจะได้ยินเสียงออกมาจากหลอดดังที่สุด แสดงว่าเกิดการสั่นพ้องของเสียง โดยความถี่ของคลื่นนิ่งที่ทำให้เกิดการสั่นพ้องของเสียงในหลอด มีได้หลายค่าดังนี้
อออ 1. ความถี่มูลฐาน (Fundamental) คือ ความถี่ต่ำสุดของคลื่นนิ่งในหลอด ซึ่งมีความยาวคลื่นมากที่สุด แล้วทำให้เกิดการสั่นพ้องของเสียง
อออ 2. โอเวอร์โทน (Overtone) คือ ความถี่ของคลื่นนิ่งที่ถัดจากความถี่มูลฐานแล้วทำให้เกิดการสั่นพ้องของเสียงในหลอดนั้นได้ มีค่าเป็นขั้นๆ
อออ 3. ฮาร์โมนิค (Harmonic) คือ ตัวเลขที่บอกว่าความถี่นั้นเป็นกี่เท่าของความถี่มูลฐาน

1. การเกิดการสั่นพ้องของเสียงในหลอดปลายเปิด
อออออหลอดปลายเปิด เป็นหลอดที่ปลายทั้งสองข้างเปิดสู่อากาศ คลื่นเสียงที่สะท้อนบริเวณปากหลอดทั้งสองข้าง โมเลกุลของอากาศเคลื่อนที่ได้โดยอิสระจะเป็นตำแหน่งปฏิบัพของคลื่น ดังนั้นถ้าท่อยาว L
ภาพแสดง การเกิดคลื่นนิ่งในท่อปลายเปิดทั้งสองข้าง ยาว L
vvvvvจะสังเกตได้ว่า ความถี่ซึ่งทำให้เกิดการสั่นพ้องนั้นมีได้หลายค่า โดยสรุปเป็นความสัมพันธ์ได้ว่า
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»f«/mi»«mi»n«/mi»«/msub»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mfrac»«mi»nv«/mi»«mrow»«mn»2«/mn»«mi»L«/mi»«/mrow»«/mfrac»«/math» เมื่อ n = 1, 2, 3,...
vvvvvหรือหากพิจารณาในรูปของความยาวคลื่น จะได้ว่า
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»§#955;«/mi»«mi»n«/mi»«/msub»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mfrac»«mrow»«mn»2«/mn»«mi»L«/mi»«/mrow»«mi»n«/mi»«/mfrac»«/math» เมื่อ n = 1, 2, 3,...

2. การเกิดการสั่นพ้องอขงเสียงในหลอดปลายปิด
อออออหลอดปลายปิด เป็นหลอดที่ปลายข้างหนึ่งปิด ปลายอีกช้างหนึ่งเปิด เมื่อให้คลื่นเสียงเข้าทางปากหลอดด้านเปิด คลื่นเสียงจะเข้าไปสะท้อนที่ด้านปิดโดยมีเฟสเปลี่ยนไป 180 องศา ดังนั้นที่ตำแหน่งผิวระนาบของด้านปิดจะเป็นตำแหน่งของบัพ ส่วนบริเวณปากหลอดด้านเปิด โมเลกุลของอากาศสั่นได้โดยอิสระจะเป็นตำแหน่งปฏิบัพของคลื่นนิ่งขณะเกิดการสั่นพ้อง ดังนั้นถ้าท่อยาว L
ภาพแสดง การเกิดคลื่นนิ่งในท่อปลายปิด ยาว L

vvvvvเเช่นเดียวกับท่อปลายเปิด จะสังเกตได้ว่า ความถี่ซึ่งทำให้เกิดการสั่นพ้องนั้นมีได้หลายค่า โดยสรุปเป็นความสัมพันธ์ได้ว่า
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»f«/mi»«mi»n«/mi»«/msub»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mfrac»«mrow»«mo»(«/mo»«mn»2«/mn»«mi»n«/mi»«mo»-«/mo»«mn»1«/mn»«mo»)«/mo»«mi»v«/mi»«/mrow»«mrow»«mn»4«/mn»«mi»L«/mi»«/mrow»«/mfrac»«mo»§nbsp;«/mo»«/math» เมื่อ n = 1, 2, 3,...
vvvvvหรือหากพิจารณาในรูปของความยาวคลื่น จะได้ว่า
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»§#955;«/mi»«mi»n«/mi»«/msub»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mfrac»«mrow»«mn»4«/mn»«mi»L«/mi»«/mrow»«mrow»«mn»2«/mn»«mi»n«/mi»«mo»-«/mo»«mn»1«/mn»«/mrow»«/mfrac»«/math» เมื่อ n = 1, 2, 3,...

คลื่นแสง

คลื่นแสง

สมบัติของแสงเชิงคลื่น(การแทรกสอดและเลี้ยวเบน)

การแทรกสอดของแสงผ่านสลิตคู่ 

โธมัส ยัง (Thomas Young) ได้ทำการทดลองปรากฏการณ์แทรกสอดของแสง โดยใช้อุปกรณ์ดังแสดงในรูป
เมื่อให้แสงสีเดียวผ่านช่องแคบ S0 แล้วเลี้ยวเบนตกลงบนช่องแคบ S1 และ S2    ช่องแคบ S1 และ S2 จะทำหน้าที่เสมือนแหล่งกำเนิดคลื่นอาพันธ์ ในการทดลองใช้แผ่นสลิตคู่ ( Double slits )  เมื่อคลื่นแสงทั้งสองเดินทางไปพบกันจะทำให้เกิดการแทรกสอดกัน ในลักษณะทั้งเสริมทั้งหักล้างกันบนฉาก ทำให้ปรากฏเป็นแถบมืดและแถบสว่างปรากฏบนฉาก




แถบสว่างถึงแถบสว่างที่อยู่ติดกัน หรือมืดถึงมืดที่อยู่ติดกัน   ในการแทรกสอดของแสง จะมีระยะห่างกันคงที่  เราหาระยะห่างแบบนี้ได้จาก
การเลี้ยวเบนของแสงผ่านสลิตเดี่ยว

การเลี้ยวเบนของแสงเกิดขึ้นได้ เมื่อแสงจากแหล่งกำเนิดแสงอาพันธ์เดินทางผ่านช่องแคบที่มีขนาดเล็กใกล้เคียงกับความยาวคลื่นแสง
ทุกๆจุดบน ช่องเดี่ยว(single slit) จะทำหน้าที่เป็นแหล่งกำเนิดแสงใหม่ ตามหลักของฮอยเกน แสงจากแหล่งกำเนิดแสงใหม่จะเกิดการซ้อนทับกันบนฉาก ทำให้เราเห็นเป็นแถบมืดและแถบสว่าง


ระยะของแถบสว่างตรงกลางจะมีความกว้างมากที่สุด มีความสว่างมากที่สุด(เขียนรูปเปรียบเทียบจะมีค่าความเข้มแสงมากที่สุด)  จากรูปด้านล่างจะเห็นว่าจากกึ่งกลางแถบสว่างตรงกลางไปยังแถบมืดแรกถ้ากำหนดให้ห่าง X  เมื่อวัดจากสว่างกลางไปยังแถบสว่างแรกถัดจากกลาง จะมีระยะห่าง 1.5X   ดังนั้นเมื่อวัดความกว้างของแถบสว่างกลางที่กว้างที่สุด(จากมืด N1 ไปถึง N1 ทั้ง 2 ข้าง) จะมีระยะเท่ากับ 2X


การคำนวณการเลี้ยวเบนของแสงผ่านสลิตเดี่ยว





รูปเปรียบเทียบภาพบนฉาก จากแสงผ่านสลิตคู่ และสลิตเดี่ยว


 เกรตติ้ง

เกรตติ้ง คือ อุปกรณ์ที่ใช้ในการตรวจสอบสเปคตรัมของแสงโดยอาศัย คุณสมบัติการแทรกสอดของคลื่น   ลักษณะของเกรตติ้ง จะเป็นแผ่นวัสดุบางที่ถูกแบ่งออกเป็นช่องขนานซึ่งอยู่ชิดกันมาก  โดยทั่วไปใน 1 เซนติเมตร แบ่งออกเป็น 4,000 - 10,000 ช่อง  ในการทดลอง ถ้าเราให้แสงจากดวงอาทิตย์หรือแสงขาวจากหลอดไฟส่องผ่านเกรตติ้ง เราจะเห็นสเปรคตรัมของแสงอาทิตยหรือแสงขาว แยกออกเป็น 7 สี



รูปแสดงการฉายแสงขาวผ่านเกรตติ้ง แล้เกิดการแทรกสอดบนฉากเป็นชุดสเปกตรัม

เนื่องจากช่องเกรตติ้งมีขนานเล็ก และอยู่ชิดกันมากจึงทำให้แสงที่ออกจากช่องของเกรตติ้งเป็นรังสีขนาน เมื่อแสงดังกล่าวไปพบกัน จะเกิดการแทรกสอดกันเหมือนช่องแคบคู่ และทุก ๆ คู่ จะให้เงื่อนไขการแทรกสอดเหมือนกันหมด เราจึงพิจารณาเงื่อนไขการแทรกสอดของเกรดติ้ง จากการแทรกสอดผ่านช่องแคบคู่เพียงคู่เดียว

รูปแสดงแสงผ่านเกรติ้งซึ่งเป็นช่องขนานจำนวนมาก จะแทรกสอดเหมือนสลิตคู่

ผลการแทรกสอดของแสงหลังแสงผ่านเกรตติ้ง มี 2 แบบ คือ
1. เมื่อให้แสงสีเดียวผ่านเกรตติ้ง   จะเกิดการแทรกสอดเกิดแถบสว่างและแถบมืด เหมือนกับแสงผ่านสลิตคู่   การคำนวณเหมือนแทรกสอดผ่านสลิตคู่ จากรูปเป็นการฉายแสงเลเซอร์ผ่านเกรตติ้ง



รูป การฉายแสงสีเดียวผ่านเกรตติ้ง แล้วแทรกสอดบนฉาก
สมการคำนวณการแทรกสอด

2. เมื่อให้แสงขาวผ่านเกรตติ้ง จะเกิดการแทรกสอดเกิดแถบสว่าง(แสงขาวตรงกลาง)  และเกิดชุดสเปกตรัม โดยแต่ละชุดจะเริ่มจากแสงสีม่วงไปจนถึงแสงสีแดง ดังแสดงในรูป



รูปชุดสเปกตรัมบนฉาก เมื่อฉายแสงขาวผ่านเกรตติ้ง

ในกรณีที่ฉายแสงที่ไม่ช่แสงขาว แต่เป็นแสงที่เป็นแสงสีผสมเช่น ฉายแสงสีแดงม่วง ผ่านเกรตติ้ง จะเกิดการแทรกสอด เป็นชุดสเปกตรัมเพียง 2 สี คือ สีม่วง และสีแดง  แถบกลางเป็นแถบสว่างสีแดง ม่วง เหมือนกับแสงที่ฉายเข้ามา ดังรูป

รูป การแยกสเปกตรัมเป็นสีม่วงกับสีแดง ข้างละ 2 ชุด

ถ้าฉายแสงสีน้ำเงินเขียว  ผ่านเกรตติ้ง จะเกิดแถบแทรกสอดบนฉากเป็นอย่างไร  

สมการและการคำนวณเมื่อฉายแสงขาวผ่านเกรตติ้ง

1. เมื่อฉายแสงสีเดียวผ่านเกรตติ้ง


2. เมื่อฉายแสงขาวผ่านเกรตติ้ง


คลื่นกล

คลื่นกล




คลื่นกล

คลื่นกล (Mechanical Wave )

คลื่นกล คือการถ่ายโอนพลังงานจากจุดหนึ่งไปยังอีกจุดหนึ่ง โดยการเคลือนที่ไปของคลื่นต้องมีโมเลกุลหรืออนุภาคตัวกลางเป็นตัวถ่ายโอนพลังงานจึงจะทำให้คลื่นแผ่ออกไปได้  ดังนั้นคลื่นกลจะเดินทางและส่งผ่านพลังงานโดยไม่ทำให้เกิดการเคลื่อนตำแหน่งอย่างถาวรของอนุภาคตัวกลาง เพราะตัวกลางไม่ได้เคลื่อนที่แต่จะสั่นไปมารอบจุดสมดุล  ต่างจากคลื่นแม่เหล็กไฟฟ้าที่เดินทางโดยไม่ต้องอาศัยตัวกลาง

คำว่าคลื่นตามคำจำกัดความ หมายถึง การรบกวน (disturbance) สภาวะสมดุลทางฟิสิกส์ และการรบกวนนั้นจะเคลื่อนที่จากจุดหนึ่งออกไปยังอีกจุดหนึ่งได้ตามเวลาที่ผ่านไป  ในบทนี้จะกล่าวถึงกฎเกณฑ์ต่างๆ ของคลื่นในทางฟิสิกส์



การแบ่งประเภทของคลื่น

1. คลื่นตามขวาง (transverse wave)   ลักษณะของอนุภาคของตัวกลางเคลื่อนที่ในทิศตั้งฉากกับทิศการเคลื่อนที่ของคลื่น เช่น คลื่นผิวน้ำ คลื่นในเส้นเชือก
คลื่นตามขวาง

2. คลื่นตามยาว (longitudinal wave)    ลักษณะอนุภาคของตัวกลางเคลื่อนที่ไปมาในแนวเดียวกับทิศการเคลื่อนที่ของคลื่น  เช่น คลื่นเสียง



คลื่นตามยาว

ส่วนประกอบของคลื่น

1.สันคลื่น (Crest) เป็นตำแหน่งสูงสุดของคลื่น หรือเป็นตำแหน่งที่มีการกระจัดสูงสุดในทางบวก จุด g
2.ท้องคลื่น (Crest) เป็นตำแหน่งต่ำสุดของคลื่น หรือเป็นตำแหน่งที่มีการกระจัดสูงสุดในทางลบ จุด e
3.แอมพลิจูด (Amplitude) เป็นระยะการกระจัดมากสุด ทั้งค่าบวกและค่าลบ วัดจากระดับปกติไปถึงสันคลื่นหรือไปถึงท้องคลื่น สัญลักษณ์ A
4.ความยาวคลื่น (wavelength) เป็นความยาวของคลื่นหนึ่งลูกมีค่าเท่ากับระยะระหว่างสันคลื่นหรือท้องคลื่นที่อยู่ถัดกัน หรือระยะระหว่าง 2 ตำแหน่งบนคลื่นที่ที่เฟสตรงกัน(inphase) ความยาวคลื่นแทนด้วยสัญลักษณ์ Lamda  มีหน่วยเป็นเมตร (m)  ระยะ xy
5.ความถี่ (frequency) หมายถึง จำนวนลูกคลื่นที่เคลื่อนที่ผ่านตำแหน่งใด ๆ ในหนึ่งหน่วยเวลา แทนด้วยสัญลักษณ์ มีหน่วยเป็นรอบต่อวินาที (s-1) หรือ เฮิรตซ์ (Hz)  จาก cd   โดย f = 1/T
6.คาบ (period) หมายถึง ช่วงเวลาที่คลื่นเคลื่อนที่ผ่านตำแหน่งใด ๆ ครบหนึ่งลูกคลื่น แทนด้วยสัญลักษณ์ มีหน่วยเป็น
วินาทีต่อรอบ (s/รอบ )  โดย  T = 1/f  
7.หน้าคลื่น(wave front)  เป็นแนวเส้นที่ลากผ่านตำแหน่งที่มีเฟสเดียวกันบนคลื่น เช่นลากแนวสันคลื่น หรือลากแนวท้องคลื่น ตามรูป
รูป หน้าคลื่นตรง



รูป หน้าคลื่นวงกลม
   
รูปแสดงหน้าคลื่นต้องตั้งฉากกับรังสีคลื่นเสมอ
อัตราเร็ว

อัตราเร็วในเรื่องคลื่น แบ่งได้ดังนี้

1. อัตราเร็วคลื่น หรือเรียกว่าอัตราเร็วเฟส   เป็นอัตราเร็วคลื่นที่เคลื่อนที่ไปแบบเชิงเส้น  ซึ่งอัตราเร็วคลื่นกลจะมากหรือน้อยขึ้นอยู่กับคุณสมบัติของตัวกลางที่คลื่นเคลื่อนที่ผ่าน

สมการที่ใช้


2. อัตราเร็วของอนุภาคตัวกลาง   เป็นการเคลื่อนที่แบบซิมเปิลฮาร์มอนิก  โดนสั่นซ้ำรอยเดิมรอบแนวสมดุล ไม่ว่าจะเป็นคลื่นกลชนิดตามขวางหรือตามยาว

สมการที่ใช้
 
1.อัตราเร็วที่สันคลื่นกับท้องคลื่น เป็นศูนย์
2.อัตราเร็วอนุภาคขณะผ่านแนวสมดุล มีอัตราเร็วมากที่สุด


3.อัตราเร็วอนุภาคขณะมีการกระจัด y ใดๆ จากแนวสมดุล



3. อัตราเร็วคลื่นในน้ำ  ขึ้นกับความลึกของน้ำ ถ้าให้น้ำลึก d   จะได้ความสัมพันธ์ 

4. อัตราเร็วคลื่นในเส้นเชือก  ขึ้นอยู่กับแรงตึงเชือก (T) และค่าคงตัวของเชือก (u) ซึ่งเป็นค่ามวลต่อความยาวเชือก  

การศึกษาวีดีโอ :

1. วีดีโอเปรียบเทียบคลื่นตามขวาง กับคลื่นตามยาว

video

2. คลื่นผิวน้ำ



การเกิดคลื่นและการเคลื่อนที่แบบซิมเปิลฮาร์มอนิก

การถ่ายโอนพลังงานของคลื่นกล  อนุภาคตัวกลางจะเคลื่อนที่แบบซิมเปิลฮาร์มอนิกอย่างง่าย ซ้ำรอยเดิมรอบจุดสมดุล ไม่ได้เคลื่อนที่ไปพร้อมกับคลื่น  การเคลื่อนที่ของอนุภาคตัวกลางแบบนี้เราจะเขียนแทนการเคลื่อนที่ของคลื่นแบบรูปไซน์ ( sinusoidal wave ) ซึ่งเราสามารถหาค่าปริมาณต่างๆ ได้ ดังนี้
รูปแสดงการเคลื่อนที่ของอนุภาคตัวกลางขณะคลื่นเคลื่อนที่



ลักษณะการเคลื่อนที่แบบซิมเปิลฮาร์มอนิกอย่างง่าย

1.เป็นการเคลื่อนที่แบบสั่นหรือแกว่งกลับไปกลับมาซ้ำรอยเดิมโดยมีการกระจัดสูงสุดจากแนวสมดุล
(แอมพลิจูด) คงที่
2.เป็นการเคลื่อนที่ที่มีความเร่งและแรงแปรผันโดยตรงกับขนาดของการกระจัด แต่มีทิศทางตรงข้ามกันเสมอ (แรงและความเร่งมีทิศเข้าหาจุดสมดุล แต่การกระจัดมีทิศพุ่งออกจากจุดสมดุล)
3.ณ ตำแหน่งสมดุล x หรือ y = 0 , F = 0 , a = 0 แต่ v มีค่าสูงสุด
4.ณ ตำแหน่งปลาย x หรือ y , F , a มีค่ามากที่สุด แต่ v = 0
5.สมการการเคลื่อนที่แบบซิมเปิ้ลฮาร์มอนิก


คลื่นรูปไซน์ แสดงการกระจัด y  และเฟส


6. กรณีที่มุมเฟสเริ่มต้นไม่เป็นศูนย์ สมการความสัมพันธ์ของการกระจัด ความเร็ว และความเร่ง กับเวลาอาจเขียนได้ว่า
XXXXX1. «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»X«/mi»«mo»=«/mo»«mi»Acos«/mi»«mfenced»«mrow»«mi»§#969;t«/mi»«mo»+«/mo»«mi»§#934;«/mi»«/mrow»«/mfenced»«/math» XXXXXและXXX«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»y«/mi»«mo»=«/mo»«mi»Asin«/mi»«mfenced»«mrow»«mi»§#969;t«/mi»«mo»+«/mo»«mi»§#934;«/mi»«/mrow»«/mfenced»«/math»
XXXXX2. «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»v«/mi»«mi»x«/mi»«/msub»«mo»=«/mo»«mo»-«/mo»«mi»§#969;Asin«/mi»«mfenced»«mrow»«mi»§#969;t«/mi»«mo»+«/mo»«mi»§#934;«/mi»«/mrow»«/mfenced»«/math»XX และXXX«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»v«/mi»«mi»y«/mi»«/msub»«mo»=«/mo»«mi»§#969;Acos«/mi»«mfenced»«mrow»«mi»§#969;t«/mi»«mo»+«/mo»«mi»§#934;«/mi»«/mrow»«/mfenced»«/math»
XXXXX3. «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»a«/mi»«mi»x«/mi»«/msub»«mo»=«/mo»«mo»-«/mo»«msup»«mi»§#969;«/mi»«mn»2«/mn»«/msup»«mi»Acos«/mi»«mfenced»«mrow»«mi»§#969;t«/mi»«mo»+«/mo»«mi»§#934;«/mi»«/mrow»«/mfenced»«/math» XและXXX«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»a«/mi»«mi»y«/mi»«/msub»«mo»=«/mo»«mo»-«/mo»«msup»«mi»§#969;«/mi»«mn»2«/mn»«/msup»«mi»Asin«/mi»«mfenced»«mrow»«mi»§#969;t«/mi»«mo»+«/mo»«mi»§#934;«/mi»«/mrow»«/mfenced»«/math»
7. การเคลื่อนที่แบบซิมเปิ้ลฮาร์มอนิกของ สปริง และลูกตุ้มนาฬิกา

8. ลักษณะการเคลื่อนที่ของคลื่นขณะเวลาต่างๆ( เมื่อ period หรือ คาบ หมายถึงเวลาครบ 1 รอบ)


9. การบอกตำแหน่งบนคลื่นรูปไซน์ ด้วย เฟส (phase)  เป็นการบอกด้วยค่ามุมเป็นเรเดียน หรือองศา


การระบุเฟสด้วยมุมที่เป็นองศาและมุมเรเดียน

เฟสตรงกันบนคลื่น  จะห่างจากตำแหน่งแรก 1 Lamda , 2 Lamda , 3 Lamda , .....
เฟสตรงกันข้ามกันบนคลื่น  จะห่างจากตำแหน่งแรก  1/2  Lamda  , 3/2  Lamda  ,  5/2  Lamda , ....

ตัวอย่าง

การซ้อนทับกันของคลื่น

เมื่อคลื่น 2  ขบวนผ่านมาในบริเวณเดียวกัน มันจะรวมกัน  โดยอาศัยหลักการซ้อนทับของคลื่น ( Superposition principle)  การซ้อนทับกันมี 2 แบบ คือแบบเสริม และแบบหักล้าง

1. การซ้อนทับแบบเสริม   เกิดจากคลื่นที่มีเฟสตรงกัน เข้ามาซ้อนทับกัน  เช่น สันคลื่น+ สันคลื่น หรือท้องคลื่น+ท้องคลื่น  ผลการซ้อนทับทำให้แอมปลิจูดเพิ่มขึ้นมากที่สุด เท่ากับผลบวกของแอมปลิจูด คลื่นทั้งสอง

การซ้อนทับกันของคลื่น แบบเสริม
 2. การซ้อนทับแบบหักล้าง  เกิดจากคลื่นที่มีเฟสตรงกันข้าม เข้ามาซ้อนทับกัน  เช่น สันคลื่น+ ท้องคลื่น  ผลการซ้อนทับทำให้แอมปลิจูดลดลง เท่ากับผลต่างของแอมปลิจูด คลื่นทั้งสอง

 
การซ้อนทับกันของคลื่น แบบหักล้าง

ภาพเคลื่อนไหวการซ้อนทับกันของคลื่นแบบเสริม